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Abstract—Optimizing network protocols is crucial for im-
proving application performance. Recent research works use
multi-armed bandit (MAB) online learning methods to address
network optimization problems, aiming to improve cumulative
payoffs such as network throughput. However, existing MAB
frameworks are ineffective since they inherently assume the
network environment is static, or they have high complexity
in detecting environmental changes. In this work, we advocate
using lightweight “network-assist” techniques together with on-
line learning to optimize network protocols, and show it can
effectively detect environmental changes and maximize network
performance. Furthermore, optimizing network protocols often
face two types of decision (or arm) spaces: discrete and con-
tinuous choices, while most prior MAB models only handle
discrete settings. This paper proposes a framework capable of
managing both spaces. To our best knowledge, we are the first
to develop an MAB framework that incorporates network-assist
signals in handling dynamic environments, while considering the
distinct characteristics of discrete and continuous arm spaces.
Our framework can achieve optimality by showing its sub-
linear regret bound, matching the state-of-the-art results in
several degenerate cases. We also illustrate how to apply our
framework to two network applications: (1) wireless network
channel selection, and (2) rate-based TCP congestion control.
We demonstrate the merits of our algorithms via both numerical
simulations and packet-level experiments.

I. INTRODUCTION

As network applications continue to proliferate, optimizing
them to deliver the best possible performance is essential.
Achieving optimal performance for network applications re-
quires developing a policy that can make astute decisions,
like resource allocation, and crowdsourcing [1], [2]. How-
ever, it is difficult to know the proper operating parameters
of these applications/applications beforehand, e.g., in mobile
edge computing, the optimal lightweight services providing
good services for users are not fixed, but vary over time [3].

To explore the right operating parameters of these network
applications without any prior knowledge, researchers con-
sider online learning approaches where the learning agent es-
timates the appropriate operating parameters based on the per-
ceived network performance. Under such context, the multi-
armed bandit (MAB) is a dominant online learning method
that has been adopted for many network optimization problems
[1]. The basic MAB setting is as follows. A set of arms (or
decisions) represent different choices for operating parameter
values. If an arm is selected, it returns a payoff from an
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unknown distribution to the agent, who then attempts to make
a decision based on historically observed payoffs. Despite
the lack of prior knowledge on the operating parameters,
the MAB framework can explore the appropriate operating
parameters of an application and use such information to
make better decisions. In recent years, researchers have used
this online learning framework to optimize different network
applications, i.e., authors in [4] propose an MAB approach
with guarantee and apply it in network applications. The
authors of [5] develop a general discounted UCB framework to
determine the initial window size in TCP congestion control.
Authors in [6] design a linear MAB-based algorithm to guide
content caching of mobile edges. In [2], the authors develop
a general combinatorial multi-armed bandit that addresses
channel selection among other related problems.

However, the basic MAB model assumes a static envi-
ronment, e.g., rewards come from a stationary distribution,
thus ignoring the constantly changing network conditions. For
instance, in a cognitive radio network, the channel throughput
is unavoidably influenced by the arrival and departure of users.
Therefore, policies designed for stationary environments may
not be suitable as condition changes, leading to degraded
application performance. Only few MAB works consider state
changes in a dynamic environment. Authors in [7] rely on
observations of specific metrics to detect state changes, such as
arm payoff and its deviation. [8] performs an offline mapping
from states to decisions. However, in a time-varying network
environment, these self-detection or offline mechanisms can
be inefficient without considering the specific characteristics
of the network scenarios. Moreover, these methods explore the
entire arm space from scratch when detecting a state change.
This slows down the convergence of the MAB algorithms.

In contrast, we aim to develop a general learning method
that incorporates “network-assist” signals for promptly de-
tecting state changes and expediting the learning process.
Network-assist implies transmitting low-overhead signals in
the network “control-plane”, without requiring heavy compu-
tation or architectural support from network elements. Another
requirement of our work is that these network-assist signals
can be easily implemented on existing network protocols.
Note that network-assist signals alone exist in various network
applications, e.g., viewer-assisted transcoding in crowdsourced
transcoding, interference alignment in wireless networks, and
explicit congestion notification (ECN) in network congestion
control [9], [10]. A more specific example is the active queue



management (AQM) policies such as Random Early Detection
(RED), which drops packets when the queue length exceeds a
predefined threshold. TCP clients respond to these signals by
adjusting their transmission rates or window sizes, based on
the absence of acknowledgments for the dropped packets. De-
spite the benefits of network-assist signals in various network
applications, their potential has not been explored within the
context of online learning and protocol optimizations.

Furthermore, many network protocols, such as choosing
the sending rate of TCP, involve a continuous arm space
rather than a discrete arm set. This poses new challenges
for previous MAB works which only deal with discrete arm
sets. Facing infinite arm set and how to make the online
learning protocols operate within memory constraints is very
challenging [11]. These memory constraints hinder the agent’s
capability to gain knowledge about the infinite arm space
since oversampling non-optimal arms can lead to subpar
performance, while infinite arms in the continuous arm space
necessitate more samples to guarantee sufficient exploration
[12]. These challenges make it difficult for previous MAB
works to be applicable for general network applications.

Facing the challenges above, we propose a new non-
stationary online learning framework under a time-varying en-
vironment, and formulate an MAB model for both discrete and
continuous arm spaces. Specifically, the system environment
is dynamic during the learning process, i.e., the state may
abruptly change. The information on available arm subspace
will be revealed at the beginning of each new state utilizing
network-assist signals, which the agent can receive after some
signal delay. Our contributions are as follows:

1) We introduce a new mathematical model that elucidates
the advantages of network-assist online learning within
the context of dynamic, non-stationary MAB environ-
ments, incorporating network-assist signals to better
capture the evolving nature of these scenarios.

2) To address both discrete and continuous arm spaces, we
develop two online learning algorithms for the dynamic
state change model: DNS-UCB for handling the discrete
arm space, and CNS-UCB for optimizing granularity in
the continuous arm space.

3) We provide theoretical analysis to validate the efficiency
of both algorithms, which match the state-of-the-art
results in some specialized or simpler scenarios, and
highlight their advantages over other leading algorithms
in both discrete and continuous arm spaces.

4) We apply our proposed algorithms to two network
applications covering two types of arm spaces: channel
selection in cognitive radio networks and rate-based TCP
congestion control. In addition to our numerical simula-
tions, we also conduct packet-level ns-3 simulations to
validate the advantages of our approach.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, we introduce our online learning framework
under a “non-stationary” MAB setting with time-varying state

changes, taking into account two distinct types of arm spaces.
Firstly, in the MAB literature, arm spaces are categorized

into two types: discrete or continuous arm space. A countable
number of distinct arms are available for selection in the
discrete arm space. In contrast, the continuous arm space offers
infinite arms that can take on any value within a continuous
range. One example of network applications in the discrete arm
space is mobile crowdsensing, where the task organizer has to
decide which participants to select to enhance the quality of
crowd-sensed data [4]. An instance of network applications
with continuous arm space is network traffic engineering,
where the agent needs to decide the resource allocation, such
as bandwidth and link capacity. We respectively denote the
discrete arm set as A, with cardinality |A|, and the continuous
arm space as X ≜ [m,n], m,n ∈ R, where m (n) is the lower
(upper) bound on the feasible decision range.

We focus on dynamic environment scenarios with time-
varying states. For instance, in an opportunistic multichannel
access network, the system’s state depends on the availability
of channels, which is influenced by the movement of primary
users (PUs) [13]. Based on coordination routines to judge
the usage of current channels, the available channels from
all existing channels can be sensed by the secondary users
(SUs), but without any knowledge of the channel throughput
[14]. Another example is the explicit signal like ECN, which
can reveal the current network congestion level. Accordingly,
ECN values can represent different states and guide the sender
to adjust its sending rate [15]. The specific assistance infor-
mation from the network for the above examples is referred
to as “network-assist” signals, which enables an agent to
find pertinent arms in an appropriate subset. Formally, let S
represents the set of all states throughout the learning process,
with cardinality |S|. The set S is not known in advance but
expanded based on observed states. A network-assist signal is
a function N : S × T → 2A ∪ X that maps each state s ∈ S
at time t ∈ T to a subset of arms As ⊆ A in the discrete arm
space or a corresponding subspace Xs ⊆ X (Xs ≜ [ms, ns],
with ms and ns satisfying ms, ns ∈ [m,n] ) in the continuous
arm space. This mapping is informed by real-time network
conditions and is designed to direct the agent’s attention to a
more pertinent set of choices that are likely to yield higher
payoffs under the current network state. The network-assist
signal serves two primary roles: (1) State Reflection: Each
state s ∈ S , obtained through network assist, reflects the
current condition of the environment; (2) Arm Guidance:
The refined arm subset As or subspace Xs are customized
for different states, typically including arms that are expected
to offer higher payoffs. To enhance readability, we use A to
represent both arm spaces in the rest of this section, with
continuous space discussed later in Section III.

Next, we use an example in Fig. 1 to illustrate a channel
selection problem and describe the time-varying state evo-
lution process. The entire learning process is modeled as
a slotted system, where time is divided into a sequence of
slots T = {1, 2, 3, . . . , T}. At a certain time slot, the system
may make a transition from a state s to another state s′
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Fig. 1: State evolution process in a wireless channel selection
problem, which involves multiple wireless channels with varying
unknown channel throughput under different system states at change
point gi. An agent, responsible for selecting the channel with the
highest throughput, experiences delays dgi in knowing state changes.

(s, s′ ∈ S). The state at each time slot t ∈ T is denoted as st,
∀st ∈ S. The total number of state changes during the learning
process, denoted as M , is unknown beforehand and defined as
M =

∑T−1
t=1 I {st ̸= st+1,∀st, st+1 ∈ S} , where I{·} is the

indicator function of the event argument. Let [z] ≜ {1, . . . , z}
for any z ∈ Z+. We denote gi as the change-point for each
state change, where i ∈ [M ] and gi ∈ T . We also consider
the potential delay for receiving the signal of a state change,
where the delay of the state change-point gi is denoted as dgi ,
and (gi + dgi) ∈ T for all i ∈ [M ]. Given that the delay of
network-assist signals is significantly less than the state change
periods [13], [16], we assume that the maximum delay C in
measurements is smaller than the time interval until the next
change-point, expressed formally as:

C < min
i∈[M−1]

{gi+1 − gi}. (1)

Under a specific state st ∈ S at time slot t, each arm a ∈
Ast is associated with a prior unknown payoff distribution,
which is denoted as Dst

a and assumed to be stationary. This
implies that the payoff distributions for the same arm can vary
across different states. For instance, a higher transmission rate
can lead to a higher utility value during non-congested states,
but a lower utility value during congested states [17]. After
an arm at ∈ Ast is selected, an immediate payoff ust,t(at) is
observed, which is an independently and identically distributed
sample from the distribution Dst

a . Without loss of generality,
the payoff is normalized to the range [0, 1] for all t ∈ T . In
the scenario where the arm space is continuous, we assume
that the payoff function us,t(·) satisfies the uniformly local
Lipschitz condition [11] for all a, a′ ∈ A with ∥a− a′∥2 ≤ δ:

|us,t(a)− us,t (a
′)| ≤ L ∥a− a′∥β2 , (2)

where 0 < β ≤ 1 and L > 0 is Lipschitz constant. Eq. (2)
implies that similar arms yield similar payoffs, applicable to
diverse network applications like congestion control [18].

During the whole learning process, we aim to maximize
the expected total payoffs E

[∑
s∈S

∑
t∈T :st=s ust(at)

]
under

all states. However, for all s ∈ S, the expected payoff
function ūs(a) from the distribution Ds

a is not known to the

agent beforehand. Consequently, the agent must balance the
exploitation of their current estimate of mean payoffs with the
exploration of unknown information to obtain more accurate
estimates of these mean payoffs. To accomplish this goal, our
objective is to devise algorithms for two types of arm spaces
that can learn a policy denoted as p = {p1, p2, . . . , p|S|}
based on observed states and payoffs. The policy undergoes
continuous refinement and adaptation by minimizing the regret
between the expected cumulative payoff obtained from an op-
timal policy and the performance of the proposed algorithms.
The regret for the policy p is defined as follows:

Rp(T ) = E

∑
s∈S

∑
t∈T :
st=s

(
ust,t(a

⋆
st)− ust,t(a

pst
t )
) , (3)

where a⋆st ∈ argmaxAst denotes the optimal arm with the
highest expected payoff in the corresponding subset of arm
Ast ⊆ A under the given state st.

III. ALGORITHM DESIGN

We propose two algorithms, one for discrete and another
for continuous arm spaces, respectively. For both algorithms,
the agent can freely choose any subroutine of the finite-armed
bandit algorithms, such as Upper Confidence Bound (UCB)
[19], Thompson Sampling (TS) [20] (or their variants) and
other methods. Here, a UCB-based method is used as an
illustration only. Note that the two proposed algorithms are
specific designs that leverage signals from network assistance.
The insight behind “network-assist” is crucial as it reduces
the scope of the search and accelerates the learning speed for
finding the optimal arm under the dynamic environment.

A. Discrete Arm Space Algorithm (DNS-UCB)

Algorithm 1 DNS-UCB
1: Initialize S0 = ∅, As = A, j = 1;
2: for all t = 1, 2, . . . , T do
3: if Receive current network-assist state st then
4: Update the arm subset Ast ;
5: Remove information, check if st appears and per-

form corresponding operations using Subroutine 1;
6: end if
7: Select an arm, update the statistical information, and

maintain the sliding window using Subroutine 2;
8: end for

In the scenario where the arm space is discrete, we design
an online learning algorithm, called Discrete Network-assist
State-based UCB (DNS-UCB) for the non-stationary MAB
problem described in Section II.

The two primary challenges we face are: 1) how to maxi-
mize expected payoffs ((or minimize cumulative regret) with-
out knowledge of the payoff distributions for all arms, and 2)
how to adapt to the dynamic environment with different time-
varying states. Note that these challenges cannot be tackled
independently, as state change occurrences are sequential over



time, and the uncertain sequence of states is only revealed
after the process is completed. To overcome these challenges,
we first utilize network-assist signals to adapt to state changes
and then decompose the problem by devising a more pro-
gressive policy where a distinct policy ps is learned for each
individual state s ∈ S. In what follows, we will describe the
proposed DNS-UCB algorithm, which minimizes the separate
regret instances for all states. To reduce code redundancy, we
separate two portions of the algorithm by dividing them into
two subroutines, which will be reused for the continuous arm
space setting: (a) remove-check-perform (RCP, in Subroutine
1), and (b) select-update-maintain (SUM, in Subroutine 2).

Subroutine 1 RCP
1: Remove the wrong-state information stored in sliding

window W according to Eq. (6);
2: if st ∈ St then
3: Read the stored information at round j:

(nst
a (j), ûst,j(a)) ,∀a ∈ Ast ;

4: else
5: St = St−1

⋃
{st};

6: Set round j = 1 for new state st;
7: end if

Subroutine 2 SUM
1: Select arm at according to Eq. (5);
2: Observe the corresponding payoff ust,j(at);
3: nst

at
(j) ← nst

at
(j) + 1, update the mean payoff ûst,j(at)

according to ust,j(at), j ← j + 1;
4: Add ust,j(at) of selected arm at into W;
5: if |W| = ⌈C⌉ then
6: Remove the earliest one stored in W;
7: end if

As outlined in Algorithm 1, we maintain a set of all detected
states St at each time slot t ∈ T , which is initialized as an
empty set (Line 1). At each time slot t, the subset of arms
Ast ⊆ A is obtained from network-assist signal if a specific
state st is detected (Line 3, 4). Considering that each state
s ∈ S is independent, the entire time slots T can be partitioned
into |S| previously unknown sub-horizons, which is denoted
as Ts, with

∑
s∈S Ts = T . To keep track of the unknown

sub-horizon for each state s, we maintain a round counter j
within each sub-horizon Ts, j ∈ [T ]s. Next, we introduce how
to select arms and update estimation under each state s ∈ S .
For all a ∈ As, let ns

a(j) be the number of times arm a has
been selected up to round j ∈ [T ]s. We also define ûs,j(a) as
the empirical mean of the payoffs for arm a up to round j,
i.e., ûs,j(a) ≜ 1

ns
a(j)

∑ns
a(j)

i=1 us,i(a). Based on the historically
received payoffs generated from arm subset As under state s,
the UCB index of arm a at round j is defined as follows:

UCBs
a(j) = ûs,j(a) +

√
2 log(j)

ns
a(j)

, (4)

where the first term ûs,j(a) in Eq. (4) represents exploita-
tion of current information of empirically mean payoffs, and

the second term
√
2 log(j)/ns

a(j) represents exploration for
potential better arm not yet found, thereby mitigating the
risk of excessive exploitation. Let Ks(j) be the set of arms
that have not been selected until round j under state s, i.e.,
Ks(j) = {a ∈ As | ns

a(j) = 0,∀a ∈ As}. The arm aj to be
selected is then determined (Line 1 in Subroutine 2):

aj =

{
random choice of Ks(j − 1), Ks(j − 1) ̸= ∅
argmaxa∈As

UCBs
a(j − 1), otherwise

(5)

Subsequently, we update the statistics information based on the
payoff of the selected arm (Line 2, 3 in Subroutine 2). Note
that it is possible to revisit the same states, so we leverage
previous learning efforts rather than restarting an entirely new
learning process for the revisited state. Hence, we continue
the learning process based on the previous record if the newly
detected state st at time slot t has been visited before, i.e.,
∃h ∈ [t − 1], s.t. st = sh; otherwise, we start from scratch
(Line 2-7 in Subroutine 1). This approach offers cost and
latency reductions in the learning process, which is particularly
beneficial when time and resources are limited.

It is important to note that, in general, state changes may
not be detected instantaneously and could be delayed, namely,
a state change is received at time slot t after an unknown
delay dgi at the change-point gi (i ∈ [M ]). This can result
in erroneous samples of mixed states during time interval dgi .
To tackle this issue, we propose a sliding-window technique.
The sliding window, denoted asW , aims to identify a learning
process that occurs within the time interval dgi when mixed
states are present. Considering the unknown delay of network-
assist signals, the size of the sliding window is set to the
maximum delay, i.e., |W| ≜ ⌈C⌉ (Line 5-7 in Subroutine 2).
In practice, this can be achieved via history measurements and
periodic updates [21]. If a state change is detected, indicated
by st ̸= st−1, we remove the recorded payoffs and selection
counts within the time period [t − |W| + 1, t] for all a ∈ W
(Line 1 in Subroutine 1). The specific operations for removing
the wrong information are defined as follows:

j = j − |W|,
ns
a(j) = ns

a(j)−Na(k),

ûs,j(a) = ûs,j(a)− Ua(k).

(6)

Here, for each arm a in the sliding window W , Na(k) is
the number of occurrences of arm a and Ua(k) is the sum of
empirical payoffs of arm a. Induced from Eq. (1), the learning
round is greater than the size of the sliding window, i.e., j −
|W| > 0. This sliding-window approach allows us to eliminate
incorrect samples within the window while preserving the rest
of the learned statistic information, albeit at the sacrifice of
some learning efforts within the time interval of C − dgi .

B. Continuous Arm Space Algorithm (CNS-UCB)

Let us introduce the algorithm proposed for the continuous
arm space, called Continuous Network-assist State-based UCB
(CNS-UCB). In addition to the challenges in the discrete
arm space, a new technical challenge in continuous scenarios



involves effectively managing the infinite arm space to avoid
endless search for the optimal arm. To address this challenge,
we technically discretize the continuous arm space to constrain
the number of arms to choose based on the uniformly local
Lipschitz condition, defined as Eq. (2).

Algorithm 2 CNS-UCB
1: Initialize S0 = ∅, X s = X , j = 1, H = 2;
2: while H ≤ T do
3: Set discretization parameter D according to Eq. (7);
4: Determine the arm subset As of Xs using Eq. (8);
5: for all t = H,H + 1, . . . ,min(2H − 1, T ) do
6: if Receive current network-assist state st then
7: Update the arm subspace Xst ;
8: Obtain the subset Ast according to Eq. (8);
9: Remove information, check if st appears and

perform corresponding operations using Subroutine 1;
10: end if
11: Select an arm, update the statistical information,

and maintain the sliding window using Subroutine 2;
12: end for
13: H = 2H;
14: end while

The details of CNS-UCB are shown in Algorithm 2. CNS-
UCB consists of the outer and inner loop, respectively re-
sponsible for transforming the continuous space into discrete
space and learning a policy p to minimize cumulative regret.
For the outer loop, the discretization parameter D is carefully
designed as follows (Line 3):

D =

⌈(
H

lnH

) 1
2β+1

⌉
, (7)

where H represents the inner loop horizon. To transform a
non-uniform algorithm into a uniform one, the outer loop
applies a standard doubling strategy to double the scale of
H in an iterative manner (Line 5, 13). In the inner loop, to
handle state changes, we obtain a subspace Xs based on the
network-assist signal instead of exploring the entire continuous
arm space X (Line 7). For instance, some network devices
may provide available bandwidth estimation, which can be
used to construct the subspace. The continuous arm space
Xs = [ms, ns] ⊆ X ,∀s ∈ S is discretized into a finite set
As, whose size is determined by the discretization parameter
D, with D = |As| (Line 8):

As =

{
ms +

d

D
(ns −ms)

∣∣∣∣ d = {0, 1, 2, . . . , D}
}
. (8)

IV. THEORETICAL ANALYSIS AND SIMULATIONS

In this section, we present a comprehensive theoretical anal-
ysis of the performance of our proposed algorithms. We show
that both the DNS-UCB and CNS-UCB algorithms achieve
sub-linear regret upper bounds, i.e., limT→∞

Rp(T )
T = 0.

Our algorithms’ policy p achieves near-optimal performance,
showcasing its superiority over the linear regret of the uniform
arm selection policy and providing insight into the advantages

of our approach. Then, we compare our proposed algorithms
with state-of-the-art algorithms in both arm spaces.

A. Performance Guarantee of DNS-UCB

We firstly present Theorem 1, which provides the upper
bound of the time-average regret of Algorithm 1.

Theorem 1. The regret upper bound of DNS-UCB is

O
(√
|S||A|maxT log(T )

)
+O (CM) , (9)

where |A|max = maxs∈S |As| and | · | represents the number
of arms in the arm set.

Remark 1. The regret in Theorem 1 can be decomposed into
two terms: the first term O

(√
|S||A|maxT log(T )

)
arises

from the difference between the arm chosen under each
state and the optimal arm, while the second term O (CM)
represents the regret incurred by delayed feedback of state
changes. The magnitude of the regret upper bound depends
on the number of states |S|, and we then analyze two de-
generate cases. In the first case, assuming there is only one
observed state, the regret upper bound without signal delay is
O
(√
|A|maxT log(T )

)
, with a tighter regret bound than the

standard finite MAB bandit problem due to |A|max ≤ |A|. In
the alternative scenario, wherein all states are equally likely
to be observed—a scenario that represents the most adverse
conditions for regret as detailed in Appendix A—and with arms
uniformly distributed across each state such that |A|max =

|A|/|S|, the bound is refined to O
(√
|A|T log(T )

)
. This is

improved over the O
(√

M |A|T log(T )
)

bound posited by
[22]. Please refer to Appendix A for comprehensive proof.

B. Performance Guarantee of CNS-UCB

Then, we demonstrate the regret upper bound and the mem-
ory required to store arms of the CNS-UCB algorithm. For
simplicity, we assume X = [0, 1] without loss of generality.

Theorem 2. The regret upper bound of CNS-UCB is

O
((

L|S|
β

2β+1 + |S| 12
)
T

β+1
2β+1 log

β
2β+1 (T )

)
+O (CM) ,

(10)
with Õ

(
T 1/2β+1

)
memory required to store arms. Here, β and

L are the constants of uniformly local Lipschitz condition, and
the notation Õ(·) ignores logarithmic factors.

Remark 2. Besides the regret caused by delay, the re-
gret is primarily due to two factors: 1) the gap between
the feasible optimal arm in the discretized arm subset As

and the theoretically optimal arm, which is bounded by
O
(
L|S|

β
2β+1T

β+1
2β+1 log

β
2β+1 (T )

)
. 2) the gap between the cho-

sen arm and the best arm in the current discretized arm subset
As, bounded by O

(
|S| 12T

β+1
2β+1 log

β
2β+1 (T )

)
. The memory

required to store arms mainly depends on the discretization
parameter D. In a typical scenario where β = 1 with
∥a−a′∥2 ≤ δ, the condition is written as |us,t(a)−us,t(a

′)| ≤
L∥a−a′∥2. In this case, the regret upper bound and the storage
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Fig. 2: Cumulative regret in two arm spaces.

memory requirement are approximately Õ(T
2
3 ), and Õ(T

1
3 ),

matching stationary Lipschitz continuous bandits [23], [24].
Detailed proof is in Appendix B.

C. Performance Comparison

We present the numerical simulation results with maximum
delay C = 500 time slots for both proposed algorithms.

Discrete Arm Space. There are a total of 4 states for
simulations, each associated with a subset of 12 arms. The
payoff of each arm is modeled as a Bernoulli random variable.
We evaluate the proposed DNS-UCB algorithm against several
benchmark algorithms, including 1) ϵ-Greedy, selecting the
arm with the highest average payoff with probability 1 − ϵ,
and randomly tries other arms with probability ϵ [19]. 2)
Thompson sampling (TS), a probabilistic Bayesian approach
to the MAB problem [20]. 3) M-UCB, an adaptive MAB
algorithm that incorporates change detection for the non-
stationary bandit framework [22].

Continous Arm Space. We evaluate the proposed CNS-
UCB algorithm against several benchmark algorithms, includ-
ing 1) Vivace, an online gradient-ascent learning policy for
making decisions [18]. 2) Sliding-decision-space approach
(SDS), employing a padding function to search within a
continuous range by increasing or decreasing the arm [5].
3) CAB1, designed for the one-parameter continuum-armed
bandit problem [11]. Although Vivace and SDS originally
have different decision spaces, here we use their algvorithms
to guide the decision (arm) selection from the same range
for a fair comparison. The continuous arm space is set to
the range [1, R], where R is specified as 8000 for a large
scale. To make dynamic payoff distributions, we set two states:
ūs(a) = −(a− 1

8R)2 when s is even and ūs(a) = −(a− 3
4R)2

when s is odd, ∀a ∈ [1, R]. Then, the regret is normalized.
As shown in Fig. 2, the regret is determined by computing

the difference between the payoff achieved by each algorithm
and the payoff achieved by Hindsight, which analyzes the
complete record of all time slots, offers the ground truth of
payoffs and is not plotted. Fig. 2(a) and Fig. 2(b) demonstrate
the effectiveness of our proposed algorithms in mitigating the
regret of payoffs in both arm spaces.

V. OPTIMIZING NETWORK APPLICATIONS

This section presents the specific applications of our pro-
posed DNS-UCB and CNS-UCB algorithms to network ap-
plications under two types of arm spaces. We describe the
specific problem for each network application and map our

framework to it. Then, we evaluate them with the comparison
of existing state-of-the-art algorithms.

A. Wireless Network Channel Selection (Discrete Arms)

1) Model Mapping: Cognitive radio networks categorize
users into two types of users. Primary users (PUs) have
licensed access to a specific spectrum band and enjoy priority
for network resources. The presence of high-priority PUs and
the requirement that secondary users (SUs) should not interfere
with them gives rise to the opportunistic spectrum access
problem, which involves accessing the available spectrum [25].
Motivation. In the dynamic landscape of wireless cognitive
radio networks, the crux of the challenge for SUs to efficiently
discover and harness available spectrum resources lies in the
SUs’ ability to detect idle spectrum channels—a task that must
be executed with precision to avoid disrupting the operations
of PUs, who retain preferential rights to network resources.
This intricate balance between utilization and coexistence
underscores the critical need for innovative solutions that
enable SUs to seamlessly integrate into the spectrum without
impinging on the PUs’ domain.

Formally, we consider a wireless cognitive radio network
system consisting of |A| channels. At every time slot t ∈ T ,
each spectrum channel a ∈ A is associated with an un-
known normalized channel throughput ut(a) ∈ [0, 1]. An
online learned channel selection policy p guides SUs in
selecting channels with high throughput based on previously
observed channel throughput. We map the proposed DNS-
UCB algorithm to a spectrum channel management framework
under a dynamic network environment, composed of spectrum
mobility, spectrum sensing, and spectrum decision.
Spectrum Mobility. The PUs mainly utilize spectrum chan-
nels. The availability of spectrum channels, referred to as
state s, changes over time due to the arrival and departure
of PUs, resulting in state transitions. The number of different
availability of spectrum channels is represented as S, ∀s ∈ S.
If a PU arrives or departs at gi, i ∈ [M ], gi ∈ T , spectrum
mobility is triggered, i.e., a state change.
Spectrum Sensing. A SU can sense the new state st after
delay dgi at time slot t (t = gi + dgi ) by listening to
the available spectrum channels through the wideband access
technology and coordinated protocol [14], [26]. Hence, we
use this available information as “network-assist” signals.
Let ηst(a) denote a binary variable equal to 1 if channel a is
available at time slot t, and 0 otherwise under state st. A SU
receives the listened result set Nst = {ηst(1), . . . , ηst(|A|)}
and updates the subset of channels Ast as follows:

Ast = {a ∈ A | ηst(a) = 1,∀ηst(a) ∈ Nst}. (11)

Spectrum Decision. To select an appropriate channel for
transmission, a SU performs a channel-characteristic learning
routine. This routine takes the user’s local knowledge of
throughput as input and selects one channel at ∈ A with the
largest arm index, i.e., using Eq. (5) at time slot t.

2) Performance Evaluation: Utilizing the normalized chan-
nel throughput from the open available 4G trace dataset [27],
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Fig. 3: Performance comparisons under the wireless network channel selection problem.

TABLE I: Example of Throughput of 6 Channels.

Channel
Index #1 #2 #3 #4 #5 #6

Channel
Throughput 0.398 0.851 0.432 0.516 0.752 0.630

the channel throughput ut(a) of each channel a ∈ A is
uniformly sampled from [0, u(a)], where u(a) takes values
from the second row of Table I. If a channel is occupied by
PUs, its channel throughput will be discounted by a factor
γ ∈ (0, 1) due to the absolute priority of channels enjoyed
by PUs. Different states represent various occupied channel
configurations, such as channels 3 and 6 being occupied under
state 1 in Table I. We simulate in two settings: Setting 1 with
T = 104, M = 10, |S| = 4, |A| = 12, and γ = 1

2 ; and
Setting 2 with T = 2× 104, M = 20, |S| = 8, |A| = 24, and
γ = 1

3 . In both settings, |A|/|S| channels are not occupied
by PUs under every state. The state changes every T/M time
slot, with C = 0.1T/M as an instance. Consistent with [28],
we set the slot duration to 100 ms and adhere to the IEEE
802.11 Standard by defining the minislot duration as 20 µs.

We conduct an evaluation of the proposed DNS-UCB algo-
rithm alongside the algorithms described in Section IV. For
clarity in the graphical representation, we have omitted the
ϵ-greedy algorithm with the poorest performance· from the
figures. Since throughput is not a binary payoff, following
[20], a binary value is generated from a Bernoulli trial, with
the normalized throughput serving as the Bernoulli probability.
Except for the general delay setting (C = 0.1T/M ), we also
simulate DNS-UCB with maximum delay C = 0.05T/M and
C = 0.15T/M , denoted as DNS-UCB (0.5×) and DNS-UCB
(1.5×), to study the impact of network-assist signal delays.

Figure 3 shows the results of performance comparisons
between different algorithms. As shown in Fig. 3(a), the cumu-
lative regret of channel throughput for DNS-UCB accounts for
38.2%, 33.1% of M-UCB and TS, respectively. As time goes
by in Fig. 3(b), the percentage further drops to 30.4%, 24.8%.
Fig. 3(a) and Fig. 3(b) also demonstrate the impact of network-
assisted signal reception delay between DNS-UCB series. To
better understand the channel throughput distribution, Fig. 3(c)
shows that the DNS-UCB series exhibit a generally high and
stable channel throughput. Compared to DNS-UCB and DNS-
UCB (0.5X), DNS-UCB (1.5X) indicates a more significant
difference in the distribution of throughput due to its highest
delay. Fig. 3(d) illustrates the time taken by each algorithm to

achieve the same sum of channel throughput, where DNS-
UCB (0.5X) requires the fewest time slots. Since the two
settings have different orders of magnitude, the algorithm with
the lowest throughput is used as the reference.

B. Rate-Based TCP Congestion Control (Continuous Arms)

1) Model Mapping: We elaborate the application of our
CNS-UCB algorithm using a TCP congestion control scenario.
We choose the popular BBR protocol [29] for illustration and
show how to apply CNS-UCB to dynamically select proper
values for the “highGain” parameter of BBR.
Motivation. BBR was originally designed to control long
flows that last for many round-trip times (RTTs), and thus de-
fined four phases for a flow, namely, Startup, Drain, ProbeBW,
and ProbeRTT [29]. By successively adjusting (or pacing) the
flow rates through multiple rounds and different phases, BBR
can effectively control long flows to achieve good perfor-
mance. However, there is an emerging trend that more and
more flows become “short flows” which are finished within
a few RTTs [30], due to higher network link speeds or new
application patterns such as short videos. These short flows
will significantly impair the effectiveness of BBR’s successive
rate control since they may only be alive in the Startup phase,
making rate control in Startup more important. We notice that
BBR’s highGain parameter plays a critical role in the Startup
phase as it regulates the initial pacing rate and influences the
magnitude of bursts. However, BBR only uses a fixed value
(≈ 2.89) for highGain across various network settings, leading
to ineffective rate control in scenarios with many short flows.

We apply our CNS-UCB algorithm to guide the dynamic se-
lection of the highGain values to improve BBR, named “CNS-
BBR”. The details of CNS-BBR are described as follows.
Network-Assist Signal. ECN is a widely supported signal
for congestion notification in many modern routers, i.e., the
RED active queue management (AQM) scheme [31], which is
implemented in many network routers, supports ECN marking
for packets when the queue length at the router buffer exceeds
certain thresholds. We define ECN ratio as our “network-
assist” signal used in CNS-BBR, which is expressed by
ea(t) = nea(t)

nta(t)
. Here, nea(t) and nta(t) denote the number

of ECN-marked packets and the number of total packets sent
using arm a between round [t, t + 1], respectively. A sender
running CNS-BBR can compute this information and then
select a proper arm based on CNS-UCB.
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Fig. 4: Performance comparisons for the rate-based TCP congestion control scenario.
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Fig. 5: Queue dynamics and topology for the TCP scenario.

Reward (Payoff) Function. Note that smaller values of ECN
ratio indicate less congested networks. Thus, we employ the
following reward (payoff) function to evaluate a chosen arm
in CNS-BBR: ra(t) = 1 − ea(t), where ra(t) represents the
reward value of the chosen arm a between round [t, t+ 1].
Arm Setup. For handling more general scenarios containing
both short and long flows, CNS-BBR dynamically selects a
proper value for highGain from a continuous arm space [2, 3].
Utilizing the network-assist signal, the original arm space can
further be narrowed to an arm subspace belonging to a specific
state. For example, when the ECN ratio ea(t) < 2% indicating
a non-congested state, the value of highGain can be selected
from the subspace [2.5, 3]. When ea(t) ≥ 2% indicating a
congested state, the corresponding subspace is set to [2, 2.5].
Based on the level of ECN ratio, more states can be defined.
Here, we use two states for simplicity.

2) Performance Evaluation: We use the ns-3 (version 3.38)
packet-level simulator [32] to evaluate CNS-BBR by compar-
ing it to the original BBR. The simulation topology is shown
in Fig. 5(b), where sender i (i = 1, 2, .., N, N = 10) transmits
data to the corresponding receiver i through two routers under
the typical dumbbell topology. Specifically, each of Sender 1
and Sender 2 establishes a long flow for transmission during
the entire simulation. The remaining senders intermittently
initiate short flows lasting for around one second. The link
connecting two routers has the capacity of 100Mbps and
propagation delay of 10ms, and all the other links are set to
1000Mbps capacity and 5ms delay. CNS-BBR or BBR is run
on the sender side. The RED AQM [31] is employed by both
routers with ECN enabled, and the minimum and maximum
thresholds for ECN marking are set to 1000 and 3000 packets,
respectively. Note that a sender can record past rewards related
to the short flows initiated by itself, so as to guide the future
selection for highGain in CNS-BBR.

The simulation results are presented in Fig. 4 and Fig. 5(a).
From Fig. 4(a) and Fig. 4(b), we see BBR yields very low

pacing rates (during [12 s, 18 s]) for the two long flows when
they are mixed with bursty short flows, substantially lowering
the overall throughput. In contrast, CNS-BBR significantly
improves the pacing rates of the two long flows while mostly
maintaining similar or lower RTT and queue length (refer
Fig. 4(d) and Fig. 5(a)), by dynamically adjusting highGain
based on CNS-UCB. Fig. 4(c) depicts the pacing rates of the
short flows initiated by a specific Sender 3. One can observe
that the pacing rate of the last short flow (around [13 s, 14 s])
goes much higher than that of the two long flows in BBR, so
CNS-BBR significantly alleviates this issue.

VI. RELATED WORK

In the field of decision-making, the MAB problem has
been the subject of many research works. For instance, [1]
proposes a combinatorial sleeping MAB under a stationary
environment. However, the problem of non-stationary bandits
remains an active area of research. One recent MAB variant
in the non-stationary bandit is that the payoff distributions of
arms remain constant over epochs, but change at unknown time
instants, referred to as a “piece-wise stationary” process. [7],
[22] utilize limited side observations on past payoff data and
infer change occurrences. Besides the non-stationary bandit,
continuous arm space brings new challenges due to limited
memory and infinite arms. [24] extends such a framework into
the adversarial setting.

In our network application of the cognitive radio network,
[33] proposes a ϵ-greedy based algorithm to handle the op-
portunistic spectrum problem. [4] studies an MAB problem
with minimum-guarantee constraints and applies it to select
channels. [25] designs a hierarchical thompson sampling for
multi-band radio channel selection. However, all these works
do not consider dynamically monitoring spectrum availability
and adapting to it. In TCP congestion control, the core com-
ponent, congestion control, regulates data transmission rate
to achieve congestion avoidance [17]. There are two primary
methods: implicit congestion control and network-assist (ex-
plicit) congestion control. Implicit congestion control usually
uses packet loss or delay to infer congestion, whereas network-
assist congestion control directly uses signals from network
devices like ECN to assess congestion status [15]. Besides
traditional window-based schemes [17], rate-based schemes
have been proposed to perform direct rate control such as
BBR [29]. Moreover, online learning approach has recently
been applied to TCP congestion control like PCC-Vivace
[18] and rate control in RDMA networks [34]. However,



these approaches may face challenges in dynamic network
environments with many short flows which are finished within
a few RTTs. Our work differs from the studies above in that
we focus on the characteristics of specific network scenarios.
We design a new general MAB framework, utilizing assistance
from the network signal and integrating it into our algorithms
to adapt to the time-varying environment. Then, we show that
our protocols based on our MAB algorithms can better tackle
the dynamic network conditions. In general, our designed
approaches can cover a large range of network applications
regardless of arm spaces.

VII. CONCLUSION

This paper proposes a novel approach for network applica-
tion optimization by leveraging network-assist online learning
in dynamic environments. To our best knowledge, this is
the first work to employ network-assist signals in an online
learning model to handle the dynamic environments and is
integrated with both discrete and continuous arm space. To
address the challenges posed by two distinct arm spaces,
we develop DNS-UCB and CNS-UCB algorithms, which
incorporate network-assist signals and provide provable sub-
linear regret bounds. Furthermore, we apply both algorithms
to real-world network applications, enhancing cognitive ratio
network channel selection and rate-based TCP congestion con-
trol protocols. Extensive numerical and packet-level simulation
results demonstrate the substantial benefits of network-assist
state-based online learning in enhancing network performance.
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APPENDIX

A. Proof of Theorem 1

Proof. For simplicity, for all s ∈ S, we define the “sub-payoff
gap” ∆s

a as the difference between the expected payoff ūs
a⋆
s

of
the optimal arm a⋆s and any arm a ∈ As, i.e., ∆s

a = ūs
a⋆
s
− ūs

a.
The total regret, defined in Eq. (3), is divided into a separate
regret instance for each state:

Rps
(Ts) = E

∑
t∈T :
st=s

(
ust,t(a

⋆
st)− ust,t(a

pst
t )
) . (12)

Substituting Eq. (12) into Eq. (3) and applying Lemma 4.5
from [35], we derive the regret with signal delay as follows:

Rp(T ) =
∑
s∈S

RTs + CM =
∑
s∈S

∑
a∈As

∆s
aE [ns

a(j)] + CM

=
∑
s∈S

 ∑
a∈As

∆s
a<∆s

∆s
aE [ns

a(j)] +
∑
a∈As

∆s
a≥∆s

∆s
aE [ns

a(j)]

+ CM,

(13)
where ∆s =

√
8|As| lnTs

Ts
, ∀s ∈ S.

Due to E
[∑

a∈As
ns
a(j)

]
= E[Ts] = Ts, we have:

∑
a∈As

∆s
a<∆s

E [ns
a(j)] = E

 ∑
a∈As

∆s
a<∆s

ns
a(j)

 ≤ Ts. (14)

The proof of Theorem 1 in [19] yields the following inequality:

E [ns
a(j)] ≤

8 ln j

(∆s
a)

2
+ 1 +

π2

3︸ ︷︷ ︸
K

,∀a ∈ As,∀s ∈ S. (15)

Plugging Eq. (14) and Eq. (15) into Eq. (13), we obtain:

Rp(T ) ≤
∑
s∈S

Ts∆
s +

∑
a∈As

∆s
a≥∆s

(
8 lnTs

∆s
a

+K∆s
a

)+ CM

≤
∑
s∈S

(
Ts∆

s +
8|As| lnTs

∆s
+
∑
a∈As

K∆s
a

)
+ CM

=
∑
s∈S

(
4
√
2|As|Ts lnTs +

∑
a∈As

K∆s
a

)
+ CM

≤
∑
s∈S

4

√√√√2

T∑
t=1

|A|maxI {st = s} lnT


+
∑
s∈S

∑
a∈As

K∆s
a + CM.

(16)
The inequality

∑
s∈S

√∑T
t=1 I {st = s} ≤

√
|S|T holds by

Jensen’s inequality, with equality when
∑T

t=1 I {st = s} =
T
|S| . Plugging this into Eq. (16), we have Rp(T ) ≤
O
(√
|S||A|maxT log(T )

)
+O (CM) .

B. Proof of Theorem 2

Proof. We first focus on the regret in the inner loop, denoted
as Rp(H), where H is temporarily fixed. We renumber the H
steps from 1 to H for brevity. Define a⋆s as the optimal arm in
the continuous arm subspace Xs, and a′s as the optimal arm in
the discretized arm subset As that is closest to a⋆s . Due to Eq.
(8) with Xs ⊆ X = [0, 1], we obtain: |a′s − a∗s| ≤ ns−ms

D ≤
1
D . Combing Eq. (2) and Eq. (7), we have:

E

 ∑
t∈[H]:
st=s

(
ust,t(a

⋆
st)− ust,t(a

′
st)
)

≤ E

 ∑
t∈[H]:
st=s

L
∥∥a⋆st − a′st

∥∥β
2

 ≤ L
∑H

t=1 I {st = s}
Dβ

≤ O

L

(
H∑
t=1

I {st = s}

) β+1
2β+1

log
β

2β+1 (

H∑
t=1

I {st = s})

 ,

(17)



where the last term holds due to ( x1

ln x1
)

1
2β+1 ≤ ( x2

ln x2
)

1
2β+1 for

x2 ≥ x1 ≥ e. Otherwise, we treat the rest regret as a constant.
Hence, we have E

[∑
t∈[H]:st=s

(
ust,t(a

⋆
st)− ust,t(a

′
st)
)]
≤

O
(
L
∑H

t=1 I {st = s}
β+1
2β+1 log

β
2β+1 (H)

)
.

Next, we employ continuum-armed bandit techniques [11].
summing Eq. (17) for all s ∈ S and applying inequality∑

s∈S

(∑H
t=1 I {st = s}

) β+1
2β+1 ≤ |S|

β
2β+1H

β+1
2β+1 by Jensen’s

inequality, we obtain the following bound:

E

∑
s∈S

∑
t∈[H]:
st=s

(
ust,t(a

⋆
st)− ust,t(a

′
st)
)

≤ O
(
L|S|

β
2β+1H

β+1
2β+1 log

β
2β+1 (H)

)
.

(18)

Similar to the proof in Theorem 1 with |A|max = D, we have:

E

∑
s∈S

∑
t∈[H]:
st=s

(
ust,t(a

′
st)− ust,t(a

pst
st )
)

≤ O
(√
|S||A|maxH logH

)
+O (CM)

= O
(√
|S|H

β+1
2β+1 log

β
2β+1 (H)

)
+O (CM)

(19)

Combining Eq. (18) and Eq. (19) bounds the inner loop regret:

Rp(H) = E

∑
s∈S

∑
t∈[H]:
st=s

(
ust,t(a

⋆
st)− ust,t(a

pst
st )
)

≤ O
((

L|S|
β

2β+1 + |S| 12
)
H

β+1
2β+1 log

β
2β+1 (H)

)
+O (CM) .

(20)
Finally, following the proof of Theorem 3.1 in [11], we sum up
this bound over all iterations of the inner loop, resulting in a
geometric progression. The largest term of this progression
is expressed as O

((
L|S|

β
2β+1 + |S| 12

)
T

β+1
2β+1 log

β
2β+1 (T )

)
regarding T . This completes the proof of Theorem 2.
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