

A Unified Online-Offline Framework for Co-Branding Campaign Recommendations

Xiangxiang Dai ¹, Xiaowei Sun ², Jinhang Zuo ³, Xutong Liu ⁴, John C.S. Lui ¹

The Chinese University of Hong
 Fudan University
 City University of Hong Kong
 Carnegie Mellon University

Introduction

- Cobranding represents a powerful marketing strategy.
- Involve two brands collaborating to create a unique product or campaign.
- ➤ Enhance market reach, brand equity, and appeal to diverse demographics.
- > Example:
 - Making luxury accessible (Versace + H&M),
 - Elevating premium design (BlackBerry + Porsche Design),
 - Or targeting niche lifestyles (Nike + Apple)
- Cobranding drives innovation and strengthens consumer connections.

CO-BRANDING

VERSACE

MORE AFFORDABILITY / WIDER ACCESSIBILITY for Versace products in H&M stores

2

HIGHER PREMIUM ON BLACKBERRY since it attaches itself to the Porsche Design brand equity

3

APPEAL TO A NICHE MARKET/ CERTAIN LIFESTYLE a wider demographic is reached Nike appealing to Apple users and vice versa

Introduction

- ➤ Partner Selection: Mismatched collaborations can reduce profits or harm reputation.
- Market Uncertainty: Unpredictable factors like the Matthew Effect, consumer fatigue, and shifting preferences create risks.
- ➤ Partner Willingness: Target brands' participation is uncertain due to brand positioning and financial commitment.
- > Exploration Exploitation: Balancing known partnerships with new ones is tricky, given high costs and early risks.
- ➤ Budget Constraints: Managing multiple subbrands requires holistic budget allocation for maximum collective benefits.

Model

CoBranding Bipartite Graph Model

- \mathcal{F} $\mathcal{G} = (\mathcal{U}, \mathcal{V}, \mathcal{E})$ models cobranding opportunities between a parent brand and potential partner brands.
- $\succ \mathcal{U}$: Subbrands $|\mathcal{U}| = U$ from parent brand system.
- > \mathcal{V} : Target partner brands $|\mathcal{V}| = V$.
- ightharpoonup Edges $e:=(u,v)\in\mathcal{E}$: Represent cobranding pairs.
- \blacktriangleright Weight vector $\mu = \{\mu_e\}_{e \in \mathcal{E}}$: Probability of success, influenced by alignment and budget.
- Market gain vector $\mathbf{g} = \{g_v\}_{v \in \mathcal{V}}$: Revenue from target brand v to entire parent brand company \mathcal{U} .
- ➤ Visual: See Figure right *U=4*, *V=5*.

Problem Formulation

Unified Problem Formulation

> α-approximate regret:

$$Reg(T) = \alpha T \cdot r_{\mathcal{G}}(\boldsymbol{b}^*) - \mathbb{E}\left[\sum_{t=1}^{T} r_{\mathcal{G}}(\boldsymbol{b}_t^A)\right], \tag{4}$$

 \triangleright Objective: Minimize Reg(T) for optimal longterm strategy.

Online Feedback Mechanism

- > T round (co-branding season) online learning process.
- \blacktriangleright Budget allocation: $b_t = (b_{t,1}, \dots, b_{t,U})$ per season.
- ightharpoonup Action: $S_t^{b_t} \subseteq \mathcal{E}$ for cobranding pairings.
- Feedback: $X_{t,S_t} = (X_{t,1}, \dots, X_{t,|S_t|}) \in [0,1]^{|S_t|}$ (success propensity) and $Y_{t,V}$ (market gain) observed.
- Reward: $R_{\mathcal{G}}(\boldsymbol{b}_t) = \sum \mathbb{I}\{\exists e = (u, v) \in S_t \text{ s.t. } X_{t, e, b_u} = 1\}Y_{t, v},$
- ➤ Goal: Learn probability of successful co-branding and brand market gain to maximize cumulative reward.

Offline Strategic Budget Allocation

- \triangleright Total budget B allocated as $b = (b_1, \dots, b_U)$
- Constraints: Each subbrand is assigned a predetermined
- budget cap. > Expected reward: $r_{\mathcal{G}}(b) = \sum_{v \in \mathcal{V}} g_v \left(1 \prod_{e=(u,v) \in S} (1 \mu_{e,b_u}) \right).$ (2)
- > Optimization: Maximize expected reward under constraints, NPhard, solved via α-approximation.
- Goal: Prioritize highpotential subbrands within budget limits.

Algorithm

Algorithmic Workflow

Hybrid online-offline: Integrate online and offline processes for co-branding optimization.

- ① Estimate co-branding bipartite graph G.
- ② Allocate budget to select optimal co-branding pairs.
- ③ Execute initial campaigns and collect market feedback.
- 4 Refine graph estimates with feedback.
- ⑤ Re-optimize for subsequent campaigns.

Overview: Combines dynamic learning with strategic planning for maximum market impact.

Algorithm

Graph Learning via Online Feedback

Exploration-Exploitation Trade-off:

- ◆ Co-branding bipartite information often partially or unknown.
- ◆ Naive best-partner selection risks local optima.
- ◆ Solution: Confidence-based Multi-Armed Bandit (MAB) strategy.

Enhancements:

- ◆ Bernstein-type bound tightens confidence radius using variance.
- ♦ Non-decreasing UCBs reflect realistic spending trends.
- ♦ Historical data initializes but excludes from radius for short-term focus.

Algorithm 1 Confidence-Based Online Learning for Co-Branding (CBOL)

Require: Set of co-branding initiators \mathcal{U} , set of target brands \mathcal{V} .

- 1: Initialize $T_{t,e,s}$, $\hat{\mu}_{e,s}$ for each $(e,s) \in \mathcal{A}$, and T'_v , \hat{g}_v for each $v \in \mathcal{A}'$ using historical dataset \mathcal{D} .
- 2: **for** season t = 0, 1, 2, ..., T **do**
- 3: For $(e, s) \in \mathcal{A}$, $\rho_{e,s} \leftarrow Eq.$ (5), $\tilde{\mu}_{e,s} \leftarrow \hat{\mu}_{e,s} + \rho_{e,s}$, $\tilde{\mu}_{e,s} \leftarrow \max_{j \in \mathcal{N}_u, j \leq s} \tilde{\mu}_{e,j}$.
- 4: For $v \in \mathcal{A}'$, $\rho_v' \leftarrow \sqrt{\frac{6\hat{V}_v \log t}{T_{t,v}}} + \frac{9 \log t}{T_{t,v}}$, $\hat{g}_v \leftarrow \hat{g}_v + \rho_v'$.
- 5: Budget allocation $b \leftarrow \text{GPE}$ (Algorithm 2).
- 6: Observe co-branding intention feedback X_{t,S_t} under budget allocation b.
- 7: For each (e, s) that receives feedback $X_{e,s}$, update $T_{t,e,s} \leftarrow T_{t,e,s} + 1$, $\hat{\mu}_{e,s} \leftarrow \hat{\mu}_{e,s} + (X_{e,s} \hat{\mu}_{e,s})/T_{t,e,s}$, $\hat{V}_{e,s} \leftarrow \frac{T_{t,e,s}-1}{T_{t,e,s}} \left(\hat{V}_{e,s} + \frac{1}{T_{t,e,s}} \left(\hat{\mu}_{e,s} X_{t,e,s}\right)^2\right)$.
- 8: For any successful co-branding pair $e \in S_t$ with $X_{t,e,s} = 1$, observe market gain $Y_{t,\mathcal{V}}$ and update $T'_{t,v} \leftarrow T'_{t,v} + 1$, $\hat{g}_v \leftarrow \hat{g}_v + (Y_v \hat{g}_v)/T'_{t,v}$, $\hat{V}'_v \leftarrow \frac{T'_{t,v}-1}{T'_{t,v}} \left(\hat{V}'_v + \frac{1}{T'_{t,v}} \left(\hat{g}_v Y_{t,v}\right)^2\right)$.
- 9: end for

Algorithm

Budget Optimization via Offline Planning

Submodular Property Basis:

- **♦** Reward exhibits **diminishing marginal returns**.
- ◆ **Total** marginal gain decreases as budget shifts to one sub-brand.

Refining Approximation Ratio:

- \bullet Improves on α with partial enumeration.
- ◆ Focuses on quality over time complexity due to high co-branding costs.

Integration with Online Learning:

- ◆ Use learned bipartite graph for campaign execution.
- ◆ Balance budget planning across multiple partners or proportionally.
- ◆ Feedback **updates estimates** for future seasons.

Algorithm 2 Greedy Partial Enumeration for Budget Optimization (GPE)

```
Require: Co-Branding graph \mathcal{G}, total budget \mathcal{B}, budget cap \mathcal{C}_{u},
        tentative spending plans \mathcal{N}_u, u \in \mathcal{U}, operational constraint K.
  1: Initialize b_{max} \leftarrow 0.
  2: \mathcal{B} \leftarrow \{b = (b_1, ..., b_U) | 0 \le b_u \le c_u, b_u \in \mathcal{N}_u, \sum_{u \in \mathcal{U}} b_u \le c_u, b_u \in \mathcal{N}_u, \sum_{u \in \mathcal{U}} b_u \le c_u, b_u \in \mathcal{N}_u, \sum_{u \in \mathcal{U}} b_u \le c_u, b_u \in \mathcal{N}_u, \sum_{u \in \mathcal{U}} b_u \le c_u, b_u \in \mathcal{N}_u, \sum_{u \in \mathcal{U}} b_u \le c_u, b_u \in \mathcal{N}_u, \sum_{u \in \mathcal{U}} b_u \le c_u, b_u \in \mathcal{N}_u, \sum_{u \in \mathcal{U}} b_u \le c_u, b_u \in \mathcal{N}_u, \sum_{u \in \mathcal{U}} b_u \le c_u, b_u \in \mathcal{N}_u
       B, \sum_{u \in \mathcal{U}} \mathbb{I}\{b_u > 0\} \leq K\}.
  3: for b \in \mathcal{B} do
  4: B' \leftarrow B - \sum_{u \in \mathcal{U}} b_u.
  5: Let Q \leftarrow \{(u, s_u) \mid u \in \mathcal{U}, s_u \in \mathcal{N}_u, 1 \leq s_u \leq c_u - b_u\}.
            while B' > 0 and Q \neq \emptyset do
             (u^*, s^*) \leftarrow \arg\max_{(u,s) \in Q} \delta(u, s, b)/s.
            if s^* < B' then
                       s_{u^*} \leftarrow s_{u^*} + s^*, B' \leftarrow B' - s^*
                       Adjust all pairs (u^*, s) \in Q to (u^*, s - s^*).
10:
                       Remove all pairs (u^*, s) \in Q such that s \leq 0.
11:
                  else
12:
                        Remove (u^*, s^*) from Q.
13:
                  end if
 14:
             end while
15:
             if r_G(b) > r_G(b_{max}), then b_{max} \leftarrow b.
```

17: end for

Theoretical Analysis

Online Learning

- Regret Bound (Theorem 1): Algorithm 1 achieves $O(V\sqrt{(NU+1)T\log T} + \log{(UVT+VT)}\log T)$ sub-linear regret.
- > Remark 1:
- ullet Expand base arms from \mathcal{A} to $\mathcal{A} \cup \mathcal{A}'$ for unknown market gains.
- ♦ Redefine the definition of the set of triggered armsin previous works, improving the leading term by O((U+1)/(NU+1)).
- ♦ Use historical data average to bound regret with a constant.

Offline Optimization

Approximation (Theorem 2): Algorithm 2 achieves (1-1/e)-approximate solution (i.e., $\alpha=1-1/e$).

> Remark 2:

- Combines partial enumeration and greedy methods.
- Best polynomial-time solution unless P=NP.
- ♦ Time complexity: $O(BN^2UV^2)$ of any partial enumeration, scales linearly with U, quadratically with V.
- ◆ Practical efficiency with finite allocation plans (e.g.,3 tiers: low, medium, high).
- ★ K=3 balance time and performance.

Experiment

Research Questions

- RQ1: Can online learning algorithm outperform in high-uncertainty co-branding for shortand longterm revenue?
- RQ2: Does offline budget strategy enhance revenue across multiple sub-brands?
- RQ3: Is framework stable across varying budgets, seasons, and plans?

Real-world Datasets.

- 3,500 cases from SocialBeta and dataworld:
- Datasets: Diet (269 *U*, 608*V*, Apparel (192 *U*, 471 *V*, IP-themed (161 *U*, 405 *V*).

Evaluation Results

➤ Co-branding Online Performance (RQ1): Outperforms baselines by 12%-73%, fastest convergence on market revenue.

Experiment

- ➤ Offline Budget Allocation (RQ2): Improve revenue from holistic parent brand perspective.
- ➤ Performance-Cost Tradeoff (RQ2 & RQ3): Revenue rises with K=1 to 3, marginal beyond 4; Running time: K=4,5 significantly increase.
- ➤ Impact of Historical Dataset (RQ1): Boost early performance, mitigate uncessary exploration loss.
- > Ablation Study (RQ3): Consistently best.

Thank You:)